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ABSTRACT

Mobile genetic elements (MGEs) account for a sig-
nificant fraction of eukaryotic genomes and are impl-
icated in altered gene expression and disease. We
present an efficient computational protocol for MGE
insertion site analysis. ELAN, the suite of tools
described here uses standard techniques to identify
different MGEs and their distribution on the genome.
One component, DNASCANNER analyses known in-
sertion sites of MGEs for the presence of signals
that are based on a combination of local physical
and chemical properties. ISF (insertion site finder)
is a machine-learning tool that incorporates infor-
mation derived from DNASCANNER. ISF permits
classification of a given DNA sequence as a poten-
tial insertion site or not, using a support vector
machine. We have studied the genomes of Homo
sapiens, Mus musculus, Drosophila melanogaster
and Entamoeba histolytica via a protocol whereby
DNASCANNER is used to identify a common set of
statistically important signals flanking the insertion
sites in the various genomes. These are used in ISF
for insertion site prediction, and the current accur-
acy of the tool is over 65%. We find similar signals at
gene boundaries and splice sites. Together, these
data are suggestive of a common insertion mechan-
ism that operates in a variety of eukaryotes.

INTRODUCTION

A prime challenge in current genomic studies is the accur-
ate annotation of genomes with regard to locating genes,
identifying promoters, CpG islands, repeats and indeed all
significant features that could have a biological conse-
quence. There are a number of computational approaches
to this long-standing problem, many of which have been
translated into software tools. Well-known examples include

the whole-genome annotation protocols Ensemble (1),
MaGe (2), GenDBan (3) and RiceGAAS (4) for the com-
plete annotation of both prokaryotic and eukaryotic gen-
omes. For the identification of well-characterized entities
such as protein coding genes, a number of programs (5–7)
are highly successful for both eukaryotic and prokaryotic
genomes.

Precisely what constitutes a significant feature on the
genome can be difficult to define, especially when the cor-
responding function is not well understood. Mobile
genetic elements (MGEs) fall in this category. They are
clearly important, constituting a major proportion of
most eukaryotic genomes, and it is presumed that they
are responsible for the significant expansion in genome
size (8), while their role in regulation is still being un-
covered (9). Originally such elements were considered to
be parasitic (10) but recent studies have shown MGE to be
involved in gene inactivation (11), transduction (12) and
regulation (9). Their role in human genetic diseases (13) is
also becoming apparent. A major class of MGE arises
from a retrotransposition mechanism (14) and it is pre-
sumed that these have played a major role in genome evo-
lution since they are more numerous in higher eukaryotes
in comparison to more primitive organisms.

The problem we address in this article is the identifica-
tion of potential insertion sites for MGEs. Clearly this de-
pends both on the nature of the element and on the
composition of the genome and the approach that we
take here is integrative, using existing tools for the identi-
fication of elements in conjunction with bioinformatics
analysis of the local environment of each class of element.
This then makes it possible to discover new insertion sites
as well as to analyze element behavior across genomes.

We briefly discuss the context of the problem. A number
of methods have been developed over the years for the
identification of transposable elements (TEs), and these
have been summarized by Bergman and Quesneville (15).
This article also drew attention to the fact that while existing
methods—that use tools that include homology, com-
parative genomics as well as de novo techniques—can be

*To whom correspondence should be addressed. Tel: +91 11 2671 7568; Fax: +91 11 2671 7586; Email: r.ramaswamy@mail.jnu.ac.in

� The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

6864–6878 Nucleic Acids Research, 2011, Vol. 39, No. 16 Published online 23 May 2011
doi:10.1093/nar/gkr337

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/39/16/6864/2411547 by Am

ity U
niversity user on 07 July 2022



combined into fairly successful TE detectors, the discovery
and annotation of new TEs remains a challenge in
bioinformatics.

Mobile elements face relatively low-selection pressure,
and thus evolve quite rapidly. This has two consequences.
First, MGEs are often difficult to detect due to the fact
that there is a high-nucleotide sequence divergence among
them. Most copies of these elements are truncated at either
or both of the 30 and 50 ends. This can be a problem in
studying older elements whose classification sometimes
requires considerable subjectivity.

A second consequence of low selection pressure relates
to the local environment of the element, namely the inser-
tion site itself. While these are also evolving rapidly, what
we see at the present time is the set of TEs that have
managed to stay on in a given set of sites, and not neces-
sarily all the sites where TEs attempted insertion. In other
words, the locations where we see MGEs today are those
that were good insertion sites and have been good ‘reten-
tion’ sites. How the insertion sites have evolved, and
whether their evolution is related to their capacity for
retention of elements are important questions, but lie
somewhat outside the scope of the present work.

The distribution of retrotransposons themselves is quite
variable, with EhLINEs/EhSINEs occupying <20% of
the Entamoeba genome (16,17), while LINEs and SINEs
comprise �50% of the human genome. Further, their
internal architecture and the mechanism of their insertion
and proliferation within the genome is quite distinct from
that of protein-coding sequences. Additional complexity
arises from the fact that each genome and its respective
elements present a unique case in terms of data manage-
ment and analysis. Sequencing methodologies and data
formats differ, ranging from unassembled contig or scaf-
fold data in the case of Entamoeba histolytica, to com-
pletely assembled genomes such as the 23 chromosomes
of the human genome. The heterogeneity of sequences and
the huge amount of data spread across a wide variety of
useful genome databases such as Ensembl (http://www
.ensembl.org), FlyBase (http://www.flybase.org) and
Genbank (http://www.ncbi.nlm.nih.gov/) present another
bioinformatics challenge for interspecies analysis.

In this article, we describe a computational protocol,
ELAN website, http://nldsps.jnu.ac.in/elan.html, which
is targeted towards genome-wide retro-transposon
element analysis. Given an element that has been identi-
fied either by some existing protocol (15) or by the internal
module ELEFINDER that is provided within ELAN,
different components permit the following analyses:

(i) Genome-wide distribution profiles of elements cur-
rently present on the genome (to any desired level
of homology). This is performed by the module
ELEFINDER.

(ii) Extraction of consensus insertion sites and
their subsequent analysis in terms of a number of
physical and chemical properties. Retro-transposon
insertion sites have distinctive structural features
that derive from their specific composition.
Physical properties which are pertinent in this
context include DNA bendability (18,19), and

propeller twist (20) as well as thermodynamic
features such as stacking energy (21), duplex stabil-
ity (22,23) and denaturation energy (24). The
program DNASCANNER analyses insertion
hotspots of elements in detail and provides a set
of signals or characteristics that are potentially
recognized by an element for its insertion.

(iii) Prediction of potential insertion sites via ISF, an
Insertion Site Finder tool that employs machine-
learning techniques that use the results from the
application of DNASCANNER.

(iv) Comparative genomics of MGEs via a relational
database, InSiDe (Insertion Site Database) which
keeps a growing list of MGEs, their locations and
their insertion environment.

The software and the data generated from the present
study can be accessed online at the site http://nldsps.jnu
.ac.in/elan.html.

MATERIALS AND METHODS

All DNA sequences continuously undergo mutations, in-
sertions and deletions. In this scenario, determining what
constitutes an ‘element’ can be a computational challenge.
For our purpose, an ‘element’ is a partial or complete
DNA sequence that has many of the characteristics of a
given family of TEs such as a reverse transcriptase domain,
endonuclease domain, poly A tail and intact boundaries
determined through target site duplications (TSDs), etc.
The element itself is generally constructed as a consensus
of several copies retrieved through database search and
subsequent processing is needed to construct a master or
ancestor gene (25). A ‘fragment’, namely a sub sequence of
an element occurs when reverse transcription is incomplete
or by indel events, post-insertional mutations and so on.
We divide fragments into three classes based upon their
termini: 50 truncated–30 intact; 50 intact–30 truncated; and
50 truncated–30 truncated (Supplementary Figure S1).

ELAN

ELAN is a series of programs that run sequentially, each
component attempting to address a question of biological
relevance. As shown in Figure 1, the pipeline is divided
into three major parts. First, copies of a given TE are
located in the genome via a BLAST N (7) search, using
Perl/Bioperl (26) scripts to parse output files. Elements as
well as flanking sequences are extracted and processed,
mainly to identify and merge fragments. Additional
programs find truncation hotspots, the distances of TEs
to genes as well as to other elements. Redundancies are
removed by a standard protocol.
A number of genomes such as Homo sapiens, Mus

musculus and E. histolytica and insertion elements listed
in Repbase (27) have been included in the present study
and information is kept current through continuous
updation on the site http://nldsps.jnu.ac.in/elan.html.
ELAN has been benchmarked against RepeatMasker
and sample files as well as programs are given for com-
parison purposes in the Supplementary Data.
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DNA SCANNER

DNA SCANNER scans genomic DNA for a number
of different physicochemical properties by incorporating
biophysical, thermodynamic, protein interactions and
sequence based features. The algorithm is outlined in
Figure 2. Based on a choice of input parameters, the pro-
gram evaluates a number of properties in moving windows
along the length of the query DNA sequence. Substrings
of window size w are generated from the 50-end of input
DNA sequences, and further divided into words (Di/Tri
nucleotides). For each of the properties (see below) par-
ameter values TP are derived and an average score Sp is
computed as a function of position to generate a graph.

Structural signals: DNA bendability

DNA bendability is the ability of DNA to deform under a
specific stimulus such as protein binding. Several models
have been proposed to study relationship of sequence with
structural bendability: there are both a trinucleotide model
based on DNAse I cutting frequencies (18), and a di-
nucleotide model based on X ray crystallography of
DNA oligomers, and kinetoplast DNA (28) in gel migra-
tion studies. It has been observed that highly bendable
DNA contains tracts of A with ‘loose periodicity’ (29).
The trinucleotide model (18) is based on the observations
that certain enzymes such as DNAase I preferably bind
and cuts DNA that is bent (or bendable) towards the
major groove, and thus DNAse I cutting frequencies on
naked DNA can be taken as quantitative measures of
major groove compressibility and anisotropic bendability.
We have used this parameter earlier for studying the

nature of pre-insertion loci (30) where the TPRT mechan-
ism suggested that restriction endonuclease involved in
retrotransposition appeared to require bent DNA for

binding and nicking. Apart from this, specific bendability
has been used as a feature to recognize E. coli promoters
(31).

Thermodynamic signals: stacking energy

The relationship between sequence, structure and stacking
energy has important biological consequences (32), for
example, for sequence-specific interactions with proteins
(33). Stacking energies are indicators of stability of the
given DNA sequence as well as of protein interactions,
and thus play an indirect role in formation of local struc-
ture (34,35). These include contributions from electrostat-
ic, polarization, dispersion and repulsive forces. The total
interaction energy of each stacked base pair is the sum of
intra and inter-strand stacking energies (21). The stacking
energies as a function of the rotational angle and separ-
ation distance between complementary pairs of all 16 di-
nucleotides have been used in DNA SCANNER.

Duplex stability: free energy signals

The relative stability of DNA duplex structure depends
upon its base sequence (23), and more specifically upon
ten different types of nearest neighbor interactions namely
AA/TT; AT/TA; CA/GT; GT/CA; CT/GA; GA/CT; CG/
GC; GC/CG; GG/CC. Using this information the overall
stability (as a measure of �G) and melting behavior of a
sequence can be predicted.

Propeller twist signals, bending stiffness and
nucleosomal positioning

DNA must distort in order to bend around a protein: this
distortion is facilitated by the deformational capacity of
dinucleotides. Some are practically rigid whereas others

Figure 1. Schematic view of the various programs in the ELAN pipeline.
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are flexible, and the propeller twist parameter measures the
tendency of DNA to twist about the long axis that makes
the two bases of a pair non-coplanar (20). Dinucleotides
having a large propeller twist tend to be more rigid than
dinucleotides with low propeller twist; thus propeller twist
can also be used as a measure of DNA flexibility.

The conformational and mechanical properties of the
DNA double helix vary in a sequence-dependent manner
(36). Specifically, nucleosomal rotational setting and bend-
ability is a function of underlying nucleotide sequence
which contributes heavily on placement of nucleosome
at specific position. Nucleosomal DNA is highly bent: his-
tones prefer sequences which have the potential to bend
for the formation of nucleosomal particles. Sivolob and
Kharpunov (36) have shown that DNA sequences possess-
ing low-bending energy correlate with potential bending
and nucleosomal positioning.

Protein interaction signals

The DNA sequence carries signals specific for its potential
to deform when interacting with other molecules such as
proteins and also during important biochemical processes
such as transcription, replication and retro-transposition.
This deformability can also serve as potential long range
signals for molecular recognition and conformational rec-
ognition (37), and based on information extracted from
existing protein–DNA crystal complexes, empirical energy
functions have been deduced. This gives the potential de-
formability of a given sequence and its potential to
interact with proteins.

DNASCANNER has been developed in Perl/CGI-Perl
and is modular in nature so that new properties can be
included without changing the core code. The parametric
data pertaining to the various physicochemical properties
discussed above is stored in a separate flat file database;
new rules can therefore be added or existing rules may be
modified easily. The program is available online at http://
tinyurl.com/dnascanner.

ISF

The information generated by DNASCANNER from
positive and negative datasets is used by ISF to construct
set of rules to classify and ‘predict’ insertion sites in
genome.

Training and testing

Flanking sequences extracted from known insertion sites
constitute pre-insertion loci which we take as the positive
dataset, Class P. By shuffling these sequences we obtain a
negative dataset Class Na. This set of sequences maintains
the base composition, but should not provide any suitable
insertion sites. An independent negative dataset, Class Nb

was constructed from randomly picked sequences in the
vicinity of true insertion sites, and a third independent
negative dataset, class Nc is constructed from sequences
taken out of coding regions in the genome. Profiles for
each property for both positive and negative datasets
were generated as described above and averaged within
each class. The position of the extremum (maximum or
minimum) was noted for each parameter for the positive
dataset (Figure 3) and was considered significant if it

Figure 2. Flow chart depicting the sequence of procedures followed by DNA SCANNER to generate profiles for given DNA sequences. The score as
function of position (x) is computed as Sx ¼

P
m
j¼1T

P
j :T

P
j is defined as the parametric score of substring j (di/trinucleotide) derived from parameter

file summed over the m substrings generated for a window of size w.
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exceeded 2 SD from the mean background (Table 1). The
profile was also computed for the negative datasets and
only properties that showed a strong differential between
positive and negative sets were included in the model.
The nature and positions of an extremum differed in

each of the chromosomes. Parametric files for each prop-
erty were constructed and the maximum (or minimum)
value and position were noted for each significant property
(Table 1). This information was used as a quantitative
measure to differentiate between positive and negative
examples for a given chromosome (see Results section as
well as Supplementary Data, tutorial.html).

We base our scoring protocol to model insertion sites
(P) or non-insertion sites (N) on Bayes’ rule (38). Using
the thermodynamic, biophysical and chemical properties
discussed above the posterior probability or score of an
insertion site, P(Pi|Sj) is computed. This is the probability
of classifying a DNA string Pi as an insertion site given
that property Sj is true for this site. P(P) and P(N) are
the prior probabilities of sites obtained from classes P and
N, respectively; here the two classes are taken to be equi-
probable. P(Sj/P) denotes the conditional probability
of the property being from class P calculated from
training data. P(Sj|N) can be computed in a similar
manner, and the highest posterior is then taken as the
true prediction.

Insertion sites are characterized by diverse parameters.
The sensitivity and specificity based upon single property
scores as determined by Bayes’ rule were only �45–55%.
We therefore decided to use a combination of param-
eters in machine learning algorithms such as voting (39),
Adaboost (40) and support vector machines (SVMs) (41).
Extensive testing revealed that SVM performed better
than other methods and emerged as the technique of
choice in the present problem. A standard SVM was
used to construct models for insertion sites of different
elements, using binary scores (1 or 0).

The details of the procedure are as follows. Consider, as
an example, the problem of finding Alu in Human
Chromosome 22 (HC22). The training set Z=(X, Y)
consist of both positive and negative examples, each of
which is characterized by a d-dimensional vector. Set
X contains insertion site examples (labeled+1) denoted
by P and non-insertion site examples (labeled 0) as N. In
order to implement SVMs, each insertion site was con-
verted into feature vectors as described. The training set
contained 595 insertion site and the same number of nega-
tive examples. Different kernels were used for learning and

Table 1. Information derived from DNASCANNER analysis of Human chromosome 2 (HC2) for Alu and L1 elements

Element Human Chrosome 2

LINES (L1) SINES (Alu)

Number of sequences taken 209 5334

Property Position Trend Value Mean (SD) Position Trend Value Mean (SD)

Trule �28 U* 0.347 0.29 (0.03)
Arule �14 U 0.530 0.36 (0.05) �13 U 0.503 0.342 (0.05)
Grule �15 D* 0.140 0.194 (0.04)
Crule �14 D 0.082 0.17 (0.03) �13 D 0.102 0.173 (0.02)
Atrule �14 U 0.769 0.65 (0.05) �14 U 0.755 0.632 (0.05)
Bendability �12 D �0.023 �0.012 (0.003) �12 D �0.02 �0.01 (0.00)
Nucleosomal_positioning �13 D �3.887 �1.48 (0.91) �14 D �3.64 �1.14 (1.00)
b-a trimeric �11 U 0.285 0.247 (0.01) �12 U 0.281 0.244 (0.01)
DNA denaturation �15 D 36.774 39.21 (1.06) �14 D 37.03 39.55 (1.10)
Duplexstability �14 U* �0.659 �0.72 (0.03) �14 U �0.66 �0.73 (0.03)
Propellartwist �13 D �7.454 �6.87 (0.23) �13 D �7.39 �6.79 (0.24)
Stabilizing energy �12 U 1.827 1.72 (0.04) �12 U 1.796 1.704 (0.04)
Stacking energy �17 U �3.313 �3.62 (0.12) �14 U �3.33 �3.65 (0.13)
Bending stiffness �14 D 22.253 26.88 (2.11) �14 D 22.95 27.44 (0.09)
Protein-induced deformability �12 D 1.948 2.18 (0.09) �12 D 1.949 2.186 (0.09)

The Trend column refers to whether this is a maxima (U) or minima (D).
*denotes that value of a given property (extrema) lie between mean +/- 2 Standard Deviation.

Figure 3. Adenine density upstream of insertion sites of Alu in human
chromosome 2. The y-axis represents the value of the property under
study (here this is the ‘A Rule’) and the x-axis represents the position
with respect to insertion site (taken as position 0). In all cases, the
properties we examine have been computed for both positive and
negative datasets.
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tested on an independent dataset containing the same
number of negative and positive instances and compared
with SVM-LIGHT (42).

Training, testing and optimization were done for each
element and each chromosome separately. Parameters
were obtained for each feature, element and genomic
sequence (organized in a hierarchical manner as
catalogued at http://nldsps.jnu.ac.in/elan.html). For
instance, for a given rule (say the A rule) the following
important attributes were identified:

(i) The extremum position (l) i.e. �13 bp (Table 1).
(ii) The extremum value i.e. 0.503 (50% A density).
(iii) The nature of the extremum, namely is it a

minimum or maximum.
(iv) The presence of additional peak in the flanks

(±5bp).

These values are derived from training dataset for each
element on a given chromosome and optimized using
ROC curves via the sensitivity and specificity values
(Supplementary Figure S2).

Consider a curated set of n examples of known insertion
sites and non-insertion sites and d features (or rules) on
which to base this classification. Associated with each in-
sertion site ik is a d-dimensional vector. The SVM algo-
rithm was trained using this dataset and the resultant
model was tested with an independent dataset comprising
both positive and negative examples. Given training sets
there is an optimal hyperplane which separates the
training data into two classes and this can be determined
via standard methods (Supplementary Figure S3).
Training and testing examples files are given in the
Supplementary Data and on http://nldsps.jnu.ac.in/
pages/isf.html.

Performance of the different rules

Sensitivity is the degree to which true examples are cor-
rectly detected whereas specificity is defined as the extent
to which false instances are rejected successfully. The
average of sensitivity and specificity is a measure of the
overall accuracy of a specific combination of parameters
used in ISF.

The performance of ISF for predicting insertion sites is
evaluated chromosome-wise and the accuracy of SVMs
for Alu elements in the human genome is given in
Supplementary Table S1. As can be seen, this can be
quite high, reaching 73% accuracy for chromosome 22.
Even higher accuracy is achieved in E. histolytica, 80%
or more for some elements. Comparable results were
obtained with elements in other genomes and L1 in
H. sapiens. In the initial stage of application of ISF,
cutoff values for each parameter was calculated to be
highest local maxima or minima observed at specific
position in plots for each rule. These cutoffs were
optimized by maximizing the overall accuracy as shown
in Supplementary Figure S2.

It should be pointed out that individual rules did not
perform as well as their combinations did (Supplementary
Table S2) but as discussed above, this did not depend on
which SVM kernels were used. The accuracy remained at

the 66% level for any given rule, but combination rules
worked better. A worked example is given online at the
ELAN website, using the Alu element in Chromosome 22
of the human genome in the form of tutorial/screen shots
along with a sample dataset (see Supplementary Data,
tutorial.html).

RESULTS

In order to assess the applicability of the tool in different
contexts, ELAN has been applied to over 50 genomes,
including E. histolytica, Caenorhabditis elegans, Canis
lupus familiaris, Macaca mulata, M. musculus and
H. sapiens. Results obtained from these studies are avail-
able through the InSiDe database, as well as on the web
site http://nldsps.jnu.ac.in/elan.html. Two examples are
discussed here in detail, an analysis of Alu and L1 in the
human genome, both well studied MGEs.
Our analysis detects �1.2 million copies (Supplementary

Table S3) of Alus in the human genome, similar to previ-
ously reported values (43). The chromosome-wise distri-
bution of Alu copies is shown in Supplementary Table S3,
the number of Alus is roughly proportional to the
chromosome length (Figure 4). There are few functional
Alu copies in the human genome, most being truncated at
either the 50 or 30 end (or both). Their distributions on the
various chromosomes follow similar patterns.
As discussed in the ‘Materials and Methods’ section, we

construct pre-insertion loci and classify them into the four
groups (Supplementary Table S3): Intact on both ends,
Intact on 50, Intact on 30 and Intact on neither end.
These are then analyzed for different physicochemical
properties using DNASCANNER (30).
Alu elements tend to preferentially insert in the vicinity

of A-rich regions (Figure 3), where thermodynamic, struc-
tural and nucleosomal positioning parameters are also
markedly different as compared to genomic average
values. These deviations were found to be statistically sig-
nificant: the Mann Whitney P-values were typically below
0.05 (see ‘Materials and Methods’ section). These patterns
are observed in all chromosomes, with the largest devi-
ation being between �12 and �15 bp from the insertion
site (Figure 5). Signals are mainly seen in the 50 intact class
(with 30 either intact or truncated) while 50 truncated
elements show signals only for some of the parameters,
the location and level being inconsistent for different
chromosomes (data not shown).
Each of the signals is converted into a graphical profile

that typically shows the relevant quantity peaking in the
vicinity of the insertion site. To validate that a given profile
is significant, we compute the average and standard devi-
ation for each parameter profile and for each class of Alu.
The local extremum, that is, maximum or minimum is
considered significant only if it exceeds the mean ±2 SD
(Table 1). An important indicator of the existence of a
pattern is that it should not occur where Alus do not
insert, and in our work we construct specific negative
datasets for this purpose. Further validation is provided
by randomly removing one third of the positive dataset
repeatedly. The pattern persists, suggesting that the signals
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Figure 5. Various signals upstream of the insertion sites of Alu in chromosome 2. The y axis represents value of the property and the x-axis gives the
relative position with respect to the insertion site (taken to be 0) (Figure 3).
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are common to all members of the set. Similar signals are
observed in flanking regions of Alu present in genes
(Supplementary Figure S4).

The biological relevance of signals in the vicinity of in-
sertion sites derives from the fact that some of these are
structural in nature, and some pertain to the energetics.
Those that we employ here include:

(i) DNA bendability which measures the mechanical
flexibility around insertion sites. We find a region
of low bendability (from �12 to �15 bp) followed
by sharp increase in the flexibility upstream of Alu
insertion sites (Supplementary Figure 5A).

(ii) Propeller twist, which also measures the flexibility
of DNA via its tendency to twist about the long
axis that makes the two bases of a pair non-
coplanar (20). Dinucleotides having a large propel-
ler twist tend to be more rigid than those with
low-propeller twist. Since proteins encoded during
TPRT seem to distort DNA, sites with specific di-
nucleotides that are more rigid and are followed by
a lower propeller twist appear to be amenable for
insertion (Figure 5).

(iii) Bending stiffness and nucleosomal positioning: nu-
cleosomes play an important role in DNA com-
pacting as well as in providing transcription
factors access to regulatory regions. Since this is es-
sential for activation of gene expression (44), we ex-
amined two different nucleosomal related features,
the bending energy/persistence length (36) and the
nucleosomal positioning profiles (36). We find that
insertion sites have a low-energy region be-
tween positions �31 and �11 with significant min-
imum at position �14 (Supplementary Figure S5).
Similar results were obtained using bending-energy
profile (Supplementary Figure S5B).

(iv) Stacking energy profiles show a peak near suitable
insertion sites, indicating that high energy regions
are intrinsically unstable, leading to easy
de-stacking or melting of DNA sequence that
enables Alu insertion (Supplementary Figure S5C).

(v) Duplex stability is a measure of the relative stabil-
ity of the DNA-duplex structure and is dependent
on sequence (23), and more specifically upon 10
different types of nearest neighbor interactions
namely AA/TT; AT/TA; CA/GT; GT/CA; CT/
GA; GA/CT; CG/GC; GC/CG; GG/CC. Using
this, we find that the region around the �13
position is destabilized more easily compared to
controls (Supplementary Figure S5D) in suitable
insertion sites.

(vi) The DNA-denaturation-energy profile
(Supplementary Figure S5E) indicates that a rela-
tively small amount of energy is required to melt
DNA near insertion sites favoring retrotran-
sposition (37 Kcal/mol at �13 bp).

(vii) Protein interaction signals, assessed via the deform-
ability of the DNA show that a region of low de-
formability, followed by one of high deformability
(Figure 5) facilitates retrotransposon insertion.

About 100 000 copies of L1 are found uniformly
distributed in each chromosome of the human genome.
Most copies (73%) are truncated on both ends, 21 852
(20%) are truncated on the 50-end and 1938 copies
(1.8%) are truncated on the 30-end. Thus intact copies of
L1 number 3663 (fewer than 4%) indicative of the extreme
mutability of these elements in the face of very weak
selection pressure (Table 2). The pre-insertion loci of L1
also share similar signals with Alu loci (Supplementary
Figure S6).

Analysis of E. histolytica genome

In E. histolytica, an early branching unicellular eukaryote
that occupies a unique evolutionary position, MGEs
occupy only 11% of genome. The pre-insertion loci of
EhLINE1, EhLINE2, EhSINE1 and EhSINE2 were con-
structed as described above. All elements show similar
insertion preferences, for example, T richness at the site
of insertion in contrast to A-rich regions in the human
genome (for both Alu and L1 elements). A number of
signals such as the propeller twist, stacking energy,
bendabilty profile, free-energy profile, DNA-denaturation
energy, protein-induced deformabilty and nucleosomal-
related features are present in the 50 upstream region.
They are absent in negative datasets constructed specific-
ally for the E. histolytica genome, namely scrambled posi-
tive dataset, sites picked from vicinity of pre-insertion loci,
sites picked from prokaryotic genomes with comparable
AT richness, and sites picked from within genes where
elements are known to not insert.

Table 2. L1 element distribution on the different chromosomes on

the human genome

Chromosome

number

Total

elements

Truncated

on both

ends

50 Truncated

and

30 intact

50 Intact

and

30 truncated

Intact

on both

ends

1 7377 5432 1557 166 222

2 8451 6239 1771 155 286

3 7766 5665 1666 154 281

4 8336 6005 1819 170 342

5 7434 5355 1650 138 291

6 6641 4849 1441 126 225

7 5406 4045 1064 103 194

8 4153 2996 886 86 185

9 4288 3188 890 68 142

10 4238 3125 891 75 147

11 4971 3575 1110 96 190

12 4468 3238 963 84 183

13 3658 2735 785 49 89

14 3188 2335 684 50 119

15 2565 1953 474 42 96

16 1654 1241 321 33 59

17 1417 1104 263 20 30

18 2544 1926 516 39 63

19 1005 787 154 25 39

20 1440 1080 296 14 50

21 1180 943 209 7 21

22 631 526 82 7 16

X 10 221 7751 1981 173 316

Y 1509 995 379 58 77

Total 104 541 77 088 21 852 1938 3663
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Insertion sites of MGE in other genomes also show similar
signals

We analyze genomes of other organisms for the presence
of signals in regions upstream of their respective insertion
elements.
In M. musculus genome, preinsertion loci of the B1

element were investigated (Supplementary Figure S7) and
it was observed that almost all the physicochemical param-
eters discussed above show significant extrema between
�12- and �15-bp upstream of the insertion site of intact
(or full length) elements. Alu insertion sites in M. mulata
(Supplementary Figure S8) also have same characteristics
(see Supplementary Data, Master_Supplementary_file.doc).

Application of DNASCANNER and ELAN on the human
genome

Some human diseases are linked to genes known to be
susceptible to retrotransposon insertions (45). A plausible
hypothesis is that within the coding region of such genes

are signals that may be recognized as insertion sites. We
applied DNASCANNER to a number of such genes. In
order to investigate the optimal insertion environment
within the coding region, a number of representative se-
quences were selected. Known sites of insertion and a
flanking region of length 1000 bp were extracted from gen-
ome databases. Controls were selected in the same gene in
the vicinity of insertion site as well as randomly picked
regions from the same gene. We conducted detailed
analyses of genes reported to be susceptible to TE inser-
tion leading to disease (46,47), including DMD (48),
CYBB (49) and APC (50) for L1, Alu and SVA insertions.
Details of the identified site and orientation of insertion
are given in Supplementary Table final-disease-gene-table
.xls. Pre-insertion loci were constructed by removing the
TE as well as the TSD. In most cases, significant signals
were observed in the flanks of disease genes although these
are not seen at Alu and L1 insertion sites (see Figure 6
and Supplementary Figures at http://nldsps.jnu.ac.in/TE-
Vs-diseases/database/). These were classified as typical,

Figure 6. (A) DNA-denaturation profile of pre-insertion loci of ABCD1 gene reported to be disrupted by Alu element at position 0. (B) Bendability
profile of preinsertion loci of Dystrophin gene reported to be disrupted by L1 element at position 0. (C) DNA-denaturation profile of pre-insertion
loci of Spectrin gene reported to be disrupted by SVA element at position 0. (D) DNA-denaturation profile of pre-insertion loci of APC gene
reported to be disrupted by Alu element at position 0. In this example the 1000 bp of sequence flanking insertion site of L1 element.
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atypical or negative: typical signals were those similar to
Alu and L1 insertion sites, a single statistically significant
extremum 10–20-bp upstream the insertion site. Examples
included gene such as SERPING1. (Supplementary
Data at final-disease-gene-table.xls) The atypical had sig-
nals outside from the �10- to �20-bp region or had two
extrema. The negative class did not show any significant
signal. Of the 49 genes studied, 11 genes were typical, in
this sense 27 genes were atypical and 11 showed no signals
(see http://nldsps.jnu.ac.in/elan.html). A representative
atypical case is that of DMD, one of the largest genes
known, of length 2.4 Mb. An instance of L1 insertion
has been reported to cause disruption in the gene at
position 128 269 leading to Duchene Myotrophy disease
(51,52). Flanking regions ranging from 100 bp to 5 Kb
were analyzed which revealed the presence of insertion
signals in the vicinity. This and other examples can be
seen online at http://nldsps.jnu.ac.in/TE-Vs-diseases/
database/ as well as in Supplementary Data (final-
disease-gene-table.xls). Based upon our limited study of
49 genes, we assume that the absence of typical signals
within exonic regions prevents wide-spread disruption
of coding regions by Alu and L1s. Several copies of
L1 and Alu are already present in the intronic regions of
these genes; this suggests that our understanding of the
role of these elements in causation of diseases by gene
disruption is at present incomplete and further analysis
is necessary

To investigate the role of insertion sites or signals in
gene regulation, we applied DNA SCANNER to a
promoter dataset derived from eukaryotic promoter
database (EPD) (53). It appears that structural features
of sequences within 500 bp (upstream or downstream) of
the TSS of several eukaryotic genes also have characteris-
tic signals (see Supplementary Data at the program web
site) although there are significant differences in the par-
ameters in the upstream and downstream regions. Signal
extrema are mostly seen in vicinity of TSS in a variety of
examples from Xenopus laevis, Gallus gallus, M. musculus,
Rattus norvegicus, Bos taurus, as well as several plants
promoters (Figure 7). Similar signals have also been seen
at splice sites of Drosophila (Supplementary Figure S9) as
well as other organisms.

Element detection within ELAN

In the present work, we use the module ELEFINDER
within ELAN to detect copies of known MGEs such as
Alu or L1. This was benchmarked against the standard,
RepeatMasker (A.F.A. Smit et al., unpublished data,
www.repeatmasker.org) and also compared to other
existing tools.

Our algorithm detects 99.5% of the Alu insertions in
human chromosome 22 (HC22) that are located by
Repeatmasker run with the following parameters:
RepeatMasker -alu -s -species human -no_is hs-chr22.fa.
(see Supplementary Data RM-ELAN-Ch22.xls at web
site). ELAN detects 24 135 Alu copies, whereas
Repeatmasker detects 24 248; the difference of 113
(0.5%) could be due to merging step of ELAN. A third
program CENSOR (54) uses the Smith–Waterman

nucleotide alignment to detect repeats and outputs
masked genomic DNA along with a tabular summary of
TE content. The online version of CENSOR (http://www.
girinst.org/censor/index.php) with standard parameters
found 24 237 copies of Alu, slightly more than either
Repeatmasker or ELAN. A full report is given in the
Supplementary Data at the web site.

ISF

The graphical results obtained from DNA SCANNER
were made quantitative in the following manner. For
each of the different structural or energetic features that
were assessed in the vicinity of insertion sites, the location
of the extremum (in base pair), its nature [minimum (D) or
maximum (U)], the value at the extremum, the average
and standard deviation (in order to assess the back-
ground). An example is described in Table 1 which sum-
marizes results for Alu and L1 in human chromosome 2
(HC2).
Consider the A density. This has a maximum

(U=0.503) at 13-bp upstream of Alu insertion sites,
with average and standard deviation of the overall
profile being 0.34 and 0.05, respectively. The peak is
thus significant and is included in the training. Any par-
ameter whose values were judged to be non-significant was
excluded from final classification model. A PERL script
was used for automation of this procedure (http://nldsps.
jnu.ac.in/dna2isf.html or tutorial.html). All Alu-insertion
sites whose A-density profiles show a maximum at �13 bp
were considered to be positive for A rule, and the overall
sensitivity, namely the fraction of insertion sites detected
by ISF was found to be 0.64. This quantity was computed
for each property (see Supplementary Table S4).

Sensitivity ¼
TP

TP+FN
:

The specificity is the fraction of non-insertion sites rejected
by ISF for a given rule, and as above, the results are
summarized in Supplementary Table S4 for Alu insertion
in human chromosome 2. For most properties these indi-
cators lie between 0.6 and 0.7 indicating that individually
they provide some level of discrimination between real
insertion sites and sites that are not suitable for insertion.
Cutoff values for each parameter were calculated as

the highest extremum observed at specific positions.
Sensitivity and specificity at several values for a given par-
ameter (Supplementary Figure S2) were computed and
optimized (Supplementary Table S5): this removes the im-
balance between sensitivity and specificity values and
improves overall performance. After optimizing each par-
ameter, these new cutoff values are used for classification.
The dataset was divided equally into training and test sets
(Supplemental Data, trainalu.txt and testalu.txt) and for
each a property vector was constructed, basically as a col-
umn of 1’s and 0’s, each entry corresponding to whether a
each property scored above the threshold value (1) or did
not (0) (see Supplementary Data, tutorial.html).
These vectors were then used as training data for a SVM

in the standard manner; see file trainalu.txt. Testing was
done on an independent dataset (file testalu.txt)
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comprising of an equivalent number of positive and nega-
tive examples. We evaluated each of the parameters for a
given chromosome separately to assess the performance
of ISF and results for classifiers for each of the human
chromosomes for Alu insertion sites are given in
Supplementary Table S1. The highest accuracy was ob-
tained from polynomial kernel in the SVM reaching
90% for human chromosome X (Supplementary Table
S1), and over 80% in E. histolytica. Comparable results
were obtained with other elements and other genomes as
well.
We also investigated the effect of individual parameters

and kernels on the accuracy of the SVM and the data is
given in Supplementary Table S2. Although the individual
rules performed poorly when used alone, the overall per-
formance increased significantly when used in combin-
ation. Rules were then deleted systematically from the
set to examine the effect on the performance under each
kernel and to arrive at a minimal set of rules that gives
maximal predictive accuracy (Supplementary Data).

DISCUSSION

MGEs have been termed drivers of evolution (55,56) in
that they effectively expand the genome by insertion,
choose optimal insertion locations, create longer inter-
genic and non-coding sequences—possibly also introns—
and thereby promote genomic diversity. Intergenic se-
quences presumably have fewer mutational constraints
than coding sequences, and the lack of selection pressure
appears to offer more versatility in evolution.

The identification of locations on the genome where
such elements can successfully insert is thus important,
and in this article, we describe a set of bioinformatics
tools for the analysis and prediction of putative MGE
insertion sites. Such locations are an important factor
for spreading of MGEs as well as genome expansion in
general, and the tool that we have developed here, ELAN
uses a combination of methods ranging from sequence
comparison to pattern recognition, machine learning,
and classification. The identification of elements, their

Figure 7. (A) The DNA-denaturation profile of DNA sequences from EPD comprising B. taurus promoters (�500 bp) and genes (400 bp). The +1
represent TSS of the gene. The window size was 100 bp of total length. (B) Propeller twist profile of same dataset. (C) Propeller twist profile of
promoters of Xenopus. (D) DNA-denaturation profile of viral genes.
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distribution and their relationship with specific genes can
be analyzed in detail, and intergenomic comparisons are
possible as well.

During insertion, a non-LTR element causes the target
site to distort in a number of ways and requires the co-
operative action of a number of proteins such as reverse
transcriptase and endonuclease to break bonds, unwind
the DNA, and most importantly, to nick the target site
strand (14). Insertion sites therefore show significant struc-
tural patterns owing to the need for a combination of rigid
and flexible regions. The potential for a given genomic
sequence to have the appropriate physical properties is
evaluated by two components of ELAN, the programs
ISF and DNASCANNER.

The specificity and sensitivity of the technique depends
on the element being analyzed and its context. Elements
have a highly non-uniform distribution for instance there
are �7000 copies of L1 on the largest human chromosome
I, but the X chromosome has over 10 000 copies. ELAN
successfully predicts over 90% of the insertion sites of Alu
using ISF on the X chromosome (Supplementary Data)
whereas on the Y chromosome the prediction rate reduces
to 60%. Since the present computational tool identifies
insertion sites mainly through the recognition of ‘typical’
patterns, it would appear that the insertion sites on the X
chromosome bear more fidelity to the standard or ideal
insertion site. The lower predictive accuracy of ISF on the
Y chromosome reflects the fact that the insertion sites may
themselves have evolved (57,58). Similarly, in analyzing
different age classes of Alu, namely the Y, S and J,
younger elements such as Alu Y show stronger signals
compared to older or truncated elements since the prob-
ability of mutation of both a given element as well its
flanking sequences increases with evolutionary time.

The sequence environment of the insertion site has fairly
specific motifs that depend on the element in question. The
local sequence between 10- and 20-bp upstream of the site
is likely the most important (although not the deciding)

feature that enables insertion. Even locally, there can be
considerable flexibility in sequence: studies of L1- and
Alu-insertion sites report both canonical (TT/AAAA)
and non-canonical (TTAAGA, TTAGAA, TTGAAA,
TTAAAG, CTAAAA, TCAAGA, AAAAAA) insertion
motifs for L1 and Alu (59–63). While the canonical motif,
TT/AAAA occurs most frequently in the upstream region
(see Figure 8, and Supplementary Data for the case of
Chromosomes 22 and Y) the other motifs are also
present in fair measure. Indeed the overwhelming majority
of TTAAAA motifs that occur on the genome are not
associated with the Alu insertion sites. At the same time,
there is considerable evidence that the 10–20-bp upstream
region plays a major role in the retro-transposition mech-
anism, and the TTAAAA motif is indeed frequently
present in this region (59). Non-canonical motifs, when
linked to elements, are also found in the same upstream
region where the various physicochemical properties we
have studied (see ‘Materials and Methods’ section) show
maximal variation. The TT/AAAA motif is present in
13% of Alu insertion sites examples studied in Human
chromosome 22 in 10–20-bp upstream of Alu insertion
sites. Our results corroborate well with earlier work (59)
where authors showed presence of TT/AAAA at �15–
16-bp upstream of 400 examples of Alu insertion sites. A
recent study suggest longer pattern containing canonical
and non-canonical motifs around Alu insertion sites (64).
Features those present on larger scales and which influ-

ence element insertion are not easily identified. Alus insert
in the immediate vicinity of A-rich regions (of size
�100 bp, Figure 3) although these regions are themselves
within GC regions on even larger scales (of the order of
megabites). Further, Alus are enriched in gene-rich
regions while L1-populate-intergenic regions. An add-
itional problem that is only partially addressed here is
whether the current distribution of MGEs reflects their
insertion dynamics, or is a consequence of the retention
potential of different sites. Thus other features, in addition
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Figure 8. Most instances of the canonical TTAAAA motifs are unrelated to known Alu insertion sites. Shown here is a histogram of distances of
TTAAAA to the nearest Alu insertion site, and as can be seen, >70% are >100-bp away from the nearest Alus (see http://nldsps.jnu.ac.in/elan.html
for more details).
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to possibly long-ranged correlations are likely to affect the
distribution of MGEs.
It is well-known that MGEs tend to invade genomes

in pairs of LINEs/SINEs. Examples include L1/Alu in
human genome, L1/B1 in mouse and EhLINEs/
EhSINEs in E. histolytica. Such pairs of elements share
insertion site preferences in addition to sharing local
sequence similarity. Alu and B1 elements belong to the
same family of SINEs and the signals observed at mouse
(B1) and human (Alu) insertion sites are strikingly similar
(Supplementary Figures S5 and S7). This raises the possi-
bility that the tools developed here for non-LTRs could be
applied to other MGEs as well and our preliminary studies
have been encouraging. For instance, the Ty1 element in
Saccharomyces cerevisiae integrates preferentially
upstream of genes that are transcribed by RNA polymer-
ase III (65). When these regions were analyzed, a number
of the signals used here for non-LTRs (the A and G rules,
bending stiffness, DNA-denaturation energy) showed sig-
nificant signals (see Supplementary Figures and data
http://nldsps.jnu.ac.in/Ty1). The other insertion sites
examined were those for P elements in Drosophila (66),
Tn7 system (67) and Sleeping beauty (68), which also
showed some of the same signals, although the specific
insertion mechanisms in these cases can be quite different
from the non LTRs. This may interpreted as though the
general mechanism behind the transposase-based mobil-
ization of DNA transposons is completely different from
the reverse transcriptase-based mechanisms of
retro-transposon mobilization but the biophysical
properties of the genomic DNA surrounding known inser-
tion sites are similar among all insertion sites.
The present work is an ongoing effort to develop an

integrated system for analysis and de novo detection of
MGEs. The tools available here are generic, and in prin-
ciple can be adapted for use in the detection of other
features as well. All data generated in these studies, as
well as from our ongoing analysis of MGEs in diverse
genomes has been curated in the database InSiDe that
incorporates information on the distributions, insertion
sites and element sequences. This is available at http://
nldsps.jnu.ac.in/inside.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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